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both maxima occurring at 20 = 85 °. These numbers 
are appreciably larger than found for alanine (Table 
3; Fig. 4); most of the increase comes from the tails, 
and may be due to the different method of treating 
the least-squares fit to the Cauchy function. The 20 
dependence of the truncation losses indicated by the 
citrinin data is similar, but by no means identical, to 
that shown in Fig. 4, emphasizing once more that 
these corrections must be considered entirely 
empirical. 

This investigation was supported in part by Public 
Health Service Research Grant no. 16966 from the 
National Institutes of Health. 

References 

ALEXANDER, K. E. & SMITH, G. S. (1962). Acta Cryst. 15, 983- 
1004. 

ARNDT, U. W. & WILLIS, B. T. M. (1966). Single Crystal Diffrac- 
tometry, p. 287. Cambridge Univ. Press. 

COMPTON, A. H. & ALLISON, K. S. (1935). X-rays in Theory and 
Experiment. New York: Van Nostrand. 

COPPENS, P. (1978). Neutron Diffraction, edited by H. DACHS, 
pp. 79-92. Berlin, Heidelberg, New York: Springer-Verlag. 

DENNE, W. A. (1977a). Acta Cryst. A33, 438-440. 
DENNE, W. A. (1977b). Acta Cryst. A33, 987-992. 
DESTRO, R. & MARSH, R. E. (1984). J. Am. Chem. Soc. 106, 

7269-7271. 

EINSTEIN, J. R. (1974). J. Appl. Cryst. 7, 331-344. 
EISENSTEIN, M. (1979). Acta Cryst. B35, 2614-2625. 
EISENSTEIN, M. & HIRSHFELD, F. L. (1983). Acta Cryst. B39, 

61-75. 
EKSTEIN, H. & SIEGEL, S. (1949). Acta Cryst. 2, 99-104. 
HIRSHFELD, F. L. & HOPE, H. (1980). Acta Cryst. B36, 406-415. 
HOPE, H. & OTTERSEN, T. (1978). Acta Cryst. B34, 3623-3626. 
HOYT, A. (1932). Phys. Rev. 40, 477-483. 
KHEIKER, D. M. (1969). Acta Cryst. A25, 82-88. 
LADELL, J., PARRISH, W. & TAYLOR, J. (1959). Acta Cryst. 12, 

561-567. 
LADELL, J. & SPIELBERG, N. (1966) Acta Cryst. 21, 103-122. 
LADELL, J., ZAGOFSKY, A. & PEARLMAN, S. (1975). J. Appl. 

Cryst. 8, 499-506. 
LANGFORD, J. I. (1982). J. Appl. Cryst. 15, 315-322. 
LEHMANN, M. S. (1980). Electron and Magnetization Densities 

in Molecules and Crystals, pp. 287-314. New York: Plenum 
Press. 

MIGNOT, J. & RONDOT D. (1976). J. Appl. Cryst. 9, 460-465. 
O'VI'ERSEN, T., ALMLOF, J. & CARLE, J. (1982). Acta Chem. Scand. 

Set. A, 36, 63-68. 
OTTERSEN, T., ALMLOF, J. & HOPE, H. (1980). Acta Cryst. B36, 

1147-1154. 
O'rrERSEN, T. & HOPE, H. (1979). Acta Cryst. B35, 373-378. 
REES, B. (1977). lsr. J. Chem. 16, 154-159. 
SAMSON, S., GOLDISH, E. & DICK, C. J. (1980). J. Appl. Cryst. 

13, 425-432. 
SIMPSON, H. J. JR & MARSH, R. E. (1966). Acta Cryst. 20, 

550-555. 
STOKES, A. R. (1948). Proc. Phys. Soc. London Sect. A, 61,382-391. 
YOUNG, R. A. (1969). Acta Cryst. A25, 55-66. 
YOUNG, R. A., GERDES, R. J. & WILSON, A. J. C. (1967). Acta 

Cryst. 22, 155-162. 

Acta Co, st. (1987). A43, 718-727 

Equations for Diffuse Scattering from Disordered Molecular Crystals 

Bv RrrA KHANNA* AND T. R. WELBERRV 

Research School of Chemistry, Australian National University, PO Box 4, Canberra City, A C T  2601, Australia 

(Received 26 February 1987; accepted 11 May 1987) 

Abstract 

General equations are presented for diffuse scattering 
due to static substitutional and orientational disorder 
in molecular crystals. Scattering due to displace- 
ments, both static and dynamic, and molecular libra- 
tions is treated separately. Examples of a pair of 
isostructural isomers of dibromodiethyldimethylben- 
zene, which show very different disorder diffuse scat- 
tering, are given. Procedures for data analysis and 
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separation of various diffuse scattering components 
are discussed. 

Introduction 

Since the early experiments of Wilchinsky (1944), 
Cowley (1950) and Warren, Averbach & Roberts 
(1951), most quantitative studies of diffuse X-ray and 
neutron scattering from disordered materials have 
been carried out on metallic alloys. The techniques 
for data and error analysis have become reasonably 
well established; see Borie & Sparks (1971), Gragg, 
Hayakawa & Cohen (1983), Hayakawa & Cohen 
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(1975), Tibballs (1975), Khanna (1984) for the latest 
procedures• Recently there has been interest in the 
study of disorder in organic molecular crystals (e.g. 
Amor6s & Amor6s, 1968; Glazer, 1970; Gierren & 
Lamm, 1980; Epstein, Welberry & Jones, 1982; 
Welberry & Siripitayananon, 1986, 1987)where the 
occurrence of disorder is governed by short-range 
intermolecular interactions which can be well mod- 
elled theoretically (Kitaigorodsky & Ahmed, 1972; 
Ramdas & Thomas, 1978). Many molecular crystals 
exhibit static substitutional disorder effects as a result 
of either two different molecules of the same shape 
or the same molecule in (two or more) different 
orientations being able to occupy the same crystallo- 
graphic site (Flack, 1970; Welberry, Jones & Epstein, 
1982). The general diffraction equations for alloys 
cannot be applied directly to analyse diffuse scattering 
from disordered molecular crystals• Although the 
same principles are involved, there are some basic 
differences between analysing diffuse scattering from 
molecular crystals and that from metallic alloys. The 
atomic scattering factors which are used in the 
analysis for alloys are replaced by molecular structure 
factors in the case of molecular crystals• These are, 
in general, complex and rapidly varying functions in 
reciprocal space and depend strongly on the position 
vectors of the various atoms constituting the molecule• 
The molecules may have different orientations in 
different sublattices, thus causing the molecular struc- 
ture factor to vary from one sublattice to another• In 
the case of orientational disorder, the position vectors 
of only a few atoms in the molecule may change from 
one orientation to another while the positions of the 
rest of the atoms remain unchanged• In addition, 
alloys basically tend to have simple structures of high 
symmetry whereas molecular crystals oftenhave low 
symmetry with complex arrangements of inter- 
molecular contacts. The modelling of the size-effect 
and thermal-vibration contributions to the diffuse 
scattering is much more difficult to quantify for 
molecular crystals• A redeeming feature for some 
molecular crystals in which disorder is introduced at 
growth is that the degree of substitutional disorder is 
independent of temperature (i.e. no exchange occurs 
between molecules of different type), unlike the case 
for alloys• Here the pair distribution functions reflect 
the intermolecular interactions which would have 
occurred during crystal growth• 

Most studies of diffuse X-ray scattering from disor- 
dered molecular crystals have been either qualitative 
or semi-quantitative and, in general, have neglected 
contributions from displacement disorder. In this 
paper, general equations for diffuse scattering from 
disordered molecular crystals are derived. The gen- 
eral equations for alloys, due to Hayakawa & Cohen 
(1975), were used as the starting point for this work 
and we derived the modifications necessary for use 
with molecular crystals. Specific examples of two 

isomers of dibromodiethyldimethylbenzene are con- 
sidered. A basic procedure to separate the various 
contributions is presented• 

1. General theory 

From kinematic theory, the total scattering intensity 
in electron units (/tot) can be written as 

/tot = X ~fml.~ exp [iK. (rm +r~, + Um.)] 
m /~ 

x Y . Y . f * . e x p [ - i K . ( r . + r ~ + u / 1 ~ ) ]  (1) 
/1 V 

where m, n and/x, v are lattice and sublattice indices 
respectively, f represents the molecular structure fac- 
tor and is in general complex, depending upon the 
position vectors of the various atoms of the molecule. 
r is the position vector of the centre of mass of a 
molecule at a lattice point with respect to an arbitrary 

• . . | • 
origin and u represents small dlsplacements with 
respect to the lattice point. K is the diffraction vector• 

i be the fraction of molecules of type i on the Let x~, 
sublattice /z and P ~  be the conditional probability 
of finding a j-type molecule on the vth sublattice 
associated with the nth lattice point• Equation (1) 
may then be written as 

/ t o t  2 i , ij ij = U ~ z v ) ) P j z v S t . v A m / 1 ,  x,~ fo, f~(ex p (iK. 
r/l,/1 
/ z ,v  

i , j  

(2) 

where Am/1 = exp [ iK. (r,, - r/l)], S~,~ = exp [ iK. (r~, - 
r~)] and exp [iK ~J • Uj,~] =exp [iK. (u , ,~ , -u~)] .  The 
average of the displaceme.nt term is taken for each 
set of intermolecular ve,.~ors whose total probability 
is r i pu The molecular orientation may differ from - - p .  - - ~ v •  

one sublattice to another, leading to a distinct 
molecular structure factor for each sublattice. /tot 
can be separated into two sums: one due to the 
average structure, /ave, and the other due to the local 
order ILO, 

/tot =/ave+ ILO, (3a) 

Iave= ~, ' j * U,~,,))S~,,,A,/1, x ,x , , f i~ , f~ , (exp (iK. ij 
m , n  
/z, v 
i , j  

(3b) 

/ L O  Z i j , = U . ~ ) )  x.x~figf~i~(exp (iK. ij 
m, /1 

i , j  

q J x[ (P~ , , , / x , , ) -  I]S,,,Am/1. (3c) 

The sum over i and j  in (3c) can be further simplified 



720 DIFFUSE SCATTERING FROM DISORDERED MOLECULAR CRYSTALS 

by employing the following relationships: 

x',,= 1 -  f_. x~, (4a) 
j ( # i )  

P ~ . =  1 -  E P ~ ,  (4b) 
j ( # i )  

ILO ~ i j , = U ~ v ) )  x~,x~fit~[fi~(exp ( iK. " 
m~n 
I.L, i,, 
i , j  

-f*(exp (iK ij ij . U . ~ ) ) ] ~ . ~ S . ~ A m . .  (5) 

We now assume that the displacements of the 
molecules are small and that the averages over odd 
powers of the displacements vanish for large inter- 
molecular vectors. In the presence of strain fields, 
both static and dynamic, molecules can undergo two 
types of movements: 

(1) Libration of the molecule about an axis, or 
axes, passing through its centre of mass. Depending 
on the axis of libration, one half of the molecule 
moves in one direction while the other half moves in 
the opposite direction. Librations shift the position 
vectors of the various atoms constituting the molecule 
by different amounts, thereby affecting the molecular 
structure factor, i.e. f ~ f +  Af. If one assumes that the 
average contribution from odd powers of Zif vanishes, 
librations result in an addition to the terms in the 
diffuse scattering which contains AfAr* (Krivoglaz, 
1969). 

(2) Translation of the molecule as a whole. The 
displacements referred to in (1) belong to this class 
of molecular motion. 

In the method of Hayakawa & Cohen (1975), 
(exp (iK. ij U.~)) can be approximated by 

(exp ( iK.  o i U ~,,)) -'- exp [ - ½((K. U ~,)2)] 

x exp [-½((K.  U{)2)] 

x exp [(K i . U , , K . U ~ ) ]  

x [ 1 + i(K 'J . U,,~)]. (6) 

This expansion is correct out to quadratic terms. With 
f~, implying f . e x p  [-½((K.  U~)2)], the intensity may 
be written in terms of the moments of expansion. 

10ve ~ i j t t*  = x ,~x~ f , , f ~S ,~Am, ,  (7a) 
Dl, n 

t/ . ,  v 

i , j  

ilv e-  = _~ i j t t* ij x , x ~ f , , f ; ~  (K. U ~,~)S,~,.A,,,,, (7 b) 
m , n  
id., v 
i,j 

i 2 v e =  y - --  i j , , ,  i x~ ,x~ f ,~ , f~ (K.  U~,K. U~)S~,~Am, (7c) 
rrl, rl 

M-, v 

i.j 

L i j 
l a v e =  ~ X ~ x v A f i o A f ) v S ~ , v A m n .  ( 7 d )  

m , n  
I.L,v 
i,j 

I L represents the contribution to the diffuse scattering 
from the molecular librations. For local-order terms, 
we have 

I°o  E " '"  j t, / t , .  , .  = a,~S~.Am,,  (8a) 
mn, i1 
p.,/ . ,  

i # j  

l [ o  E i j , , ,  ii = x~.x~f,~(f ,~ (K. U ~ )  
m , n  

/a., l, 

i # j  

t *  ij ij -f~,, (K. (8b) 

~. i y j  f t  t *  i i I2o= E --,,--~,., ,~,(f,,, (K. U~,K . U~,) 
rrt, n 

/..t, v 

i # j  

- f~ ,  (K. '* U~,K. ' U~))a~,,.S~,,.A,,,,, J o (8c) 

IL£O ~ ' j * = x , , x , a f ~ , ( z a f , ~ - a f * )  o a,~S,~A,,,, , .  (8d) 
t?l, rl 

p . ,  p 
i # j  

Equations (8a) - (8d)  clearly bring out the distinct 
contributions from molecules belonging to different 
sublattices. As will be seen in the following sections, 
this feature plays an important role in data analysis. 
Equation (7a) represents the Bragg peaks. The sum 
over i and j in (8a) can be further simplified as 

+f~,,(fj~ - f i , ) ]  = [fi~,(fi~ - f ~  ) ' '* '* f :  t f ' *  - f j * )  E ' '* '* E d | f t k d l g  t 
i # j  i > j  

t t p ,  t ,  
- - f ~ ) .  - ~ ( f i~ , - f~ , ) ( f i~  (9) 

i > j  

ISRO, given by (8a), can now be written as 

ISRO = ~,  i j , , , ,  , ,  i j  - f~ . ) ( f ,~  x~,x,,(f,~, - f ~  )au~Su~m,,,,,. (10) 
m,  i1 
i..t, v 
i > j  

The 'Laue monotonic'  scattering is given by the m g =  
nv term, 

ILM N E i j , , , ,  , ,  = X ~ X ~ ( f i ~ - - f ~ ) ( f i ~  - f ~ , )  (11) 
/x  

i > j  

where N represents the total number of lattice points. 
Unlike the case of alloys, scaling of the observed 
intensity by ILM is not very useful for disordered 
molecular crystals and even complicates data analysis 
in all but a few special cases. The desired scaling may 
differ from one crystal to another and has to be 
determined specifically. For molecular crystals, the 
sum over m, n,/x and v cannot, in general, be replaced 
by N times a single sum over intermolecular vectors 
as the structure factors differ from one sublattice to 
another owing to different molecular orientations. 
However, if the molecular orientations are identical 
in all sublattices, which they may be for some par- 
ticular 2D projections, then such a changeover is 
permissible. 
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The first moment of the diffuse scattering from both 
local order and the average lattice arises because of 
static displacements and can be written as 

i ~ = lave+ I [o  

i i f l  t* ii - -  V ~v)  - i Z x ~ x ~  ~ f ~  (K. 
m ,  t l  

i t ,  v 

i 

~ i  y j  f t  t* ii + E ..~,..,,.,,~f~,,(K.U~,~,) 
j (# i )  

21- Z i j ! t* =rii ~ ij x . x ~ f i . f . ,  ( K .  u~,,,2a~,,, 
j (¢ i )  

t ,  "TO ~ ij ] y i  X. j let f ~ , , ( K ,  u~,,,2ot~,,,JS~,,,am,,. (12) 
- -  Z " "  I t , . ' "  v d i g  

j (~ i )  

If we define 

~¢i ft. f t . * f  y i  + Z YJtTiJ ~ (13a) FL =.-~.,~.,~ \..~ J.,,)~-~V 

and 
V~.= ~'~Jr' '* ~.), (13b) .. ~.. ~, i, fj,, (1 - i j  

then (12) becomes 

11 Z ij ij = F~,,,(K. U~zv)S~vAmn. (14a) 
m ,  n 

i,j 

Second moments, which represent scattering due 
to both thermal and static displacements, can be 
written as 

12 ~, ij i • U{)S, ,~A, , , , .  = F~,~(K U~,K. (14b) 
??1, !'1 

p . ,  v 

i,j 

I L, the contribution from molecular librations, can 
be written as 

i L L = lave+ ILLO 

z [ i i  * i j  * = x~,x,,Af~,Af), ,  x . x , , A f . A f  i .  + Z 
m,n k j( # i) 
It., i; 

i 

21" Z i j , /j x~ ,x , ,A f~ ,A f  i,,a ~,,, 
j (# i )  

X ' J  , o ]  - x , x~Af i~ ,A f ) ,a~ ,~  S~,,Am,,. 
j (# i )  

(15) 

If we define 

zaF~ x~ ,a f , ,a f  ,~ + Y = x Xv  j (# i )  " 'v- - lxv]  

and 

~ txv), A F t , ,  = i j , ij x~ ,x~Af i~ ,A f j~(1-  

(15) can now be written as 

l L ~ ij = AF~,~S~,~A,,,~. 
m ,  l'l 

i,j 

(16a) 

(16b) 

(17) 

The vector products can be further simplified by using 
the equations 

K = 2"rr(h~bz + h2b2+ h3b3), (18a) 

U ~  a3 ,  U ,  a l+  (18b) 

where a and b represent unit vectors in real and 
reciprocal space respectively. The total diffuse 
intensity can now be written as 

3 3 3 
/ O  = I S R O + E  Q p h p + ~ ' . R p h 2 + ~ S p , p + l h p h p + l  ( 1 9 a )  

p p p 

where 

ISRO = ~ ~j,~S~,~A,,,,, (19b) 
??1, t'1 

/ . t , V  

Qp i Y. (19c)  = ~ S ~ , ~ A , , , , ,  
??l,n 

it., v 

Rp  ~ [8~,,,(1)+6~,,,(2)]S~.,A,,,.~P (19d) 
m , n  

It., v 

Sp.p+~= ~, [g~;P+~(1)+g~f+~(E)]S~,,,A,,,. (19e) 
m , n  

with 

x g x , ( f  i ,  - f j , ) ( f  i~ ) gtw,, = y. i j t , , .  i .  - f j~  ) (20a 
i>j 

~P~ =27r Z - - ~ v x  Fi j  (l[p'iJ~v, (20b) 
i,j 

gp (1) =47r2 £ ij p.i F~,~(U,,  U p'j) (20c) 
• . 
l , J  

g~,,(2) =4-n "2 Y~ __,,,,AF p'pj (20d) 
i,j 

-p p+ l [ l • ij p,i [ ]'p+ l,j~ e ~  ~lj 8~r 2y, U , v ~  , = F~,~( (20e) 
• . 
I , J  

~p p+ l ( o" ~ A F?pi, p+ lj ~;,, , , . /=87r2E __~,, . (20f) 
i,j 

In (19a) the contributions from librations and dis- 
placements have been collected together as they have 
similar K dependence (see Appendix 1). Equations 
(19) and (20) have a form similar to that of equations 
(22) and (23) of Hayakawa & Cohen (1975). 
However, the above equations clearly bring out the 
sublattice dependence of the various structure factors, 
a feature not present in Hayakawa & Cohen's paper. 

2. Application to specific molecular crystals 

As an example we consider a pair of isostructural 
isomers of dibromodiethyldimethylbenzene, BEMB1 
(1,4-dibromo-2,5-diethyl-3,6-dimethylbenzene) and 
BEMB2 (1,3-dibromo-2,5-diethyl-4,6-dimethylben- 
zene). Diffuse scattering data have recently been 
reported for both BEMB1 and BEMB2 (Welberry & 
Siripitayananon, 1986, 1987). These molecules form 
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disordered structures in which a molecular site can 
be occupied by either of two molecular orientations. 
The two different configurations (labelled A and B) 
differ in the position of the substituent Br- and C H  3 -  

g r o u p s  about the diethylbenzene nucleus (see Fig. 1). 
Within the resolution of the measured diffraction 
data, the diethylbenzene nucleus is ordered but the 
Br and CH3 substituents are disordered. The average 
crystal structure is monoclinic (space group P2~) with 
two molecules per unit cell. The molecules in the two 
sublattices of the unit cell are oriented differently [see 
Fig. 4 of Wood, Welberry & Puza (1984)], a feature 
which rather complicates the separation of the various 
diffuse-scattering components. We next consider 
BEMB1 and BEMB2 individually. 

2.1. BEMB2 

Let X1 [---(x,, x2, x3)] and Y~ [ - - (y , ,  Y2, Y3)] rep- 
resent the position vectors of Br atoms in crystallo- 
graphic fractional coordinates with respect to the 
centre of mass of the molecule in orientation A 
located at sublattice 1 of the unit cell. X2 
[ = (x~, -x2 ,  x3)] and Y2 [ = (Y~, -Y2, Y3)] will then be 
the corresponding position vectors of Br in sublattice 
2. Let f~ and f2 represent the structure factors of the 
ordered diethylbenzene nucleus in sublattices 1 and 
2 respectively. The structure factor of the molecule 
in the different orientations can now be written for 
sublattice 1 as 

fAa = fBr[ exp(iK.  X,) + exp(iK.  V,) ] 

+fcH3[exp(--iK. X,) + e x p ( - i K .  Y~)] +f~ 

fs ,  = far[exp(-- iK. X,) + e xp ( -  iK. Y,) ] 

+fcn3[exp(iK. X, )+exp(  iK. Y,)] +f~ 

(21a) 

(21b) 

H 3 C ~  Br 

Br- 5 cH3 

{ 
l 1 

Br" T " CH3 H3C" T "Br 

A B 

BEMB I 

B r ~ B r  

H3 O- / ~ CH 3 

I 
l 1 

B r ~ B r  HaC ~ CH 3 

A B 
BEMB 2 

Fig. 1. Molecular structures of two isomers BEMB1 and BEMB2 
which possess static orientational disorder. Two possible orienta- 
tions, A and B, are shown in the figure. 

and for sublattice 2 

fA2 = far[exp(iK. X2) + exp( iK. Y2) ] 

+ fCH~[exp(-- iK. X2) + e x p ( - i K .  Y2) ] + f2 
(21c) 

fs2 =far[exp(-- iK.  X2) + e x p ( - i K .  Y2)] 

+fca3[exp( iK.X2)+exp( iK.Y2)]+f2 .  (21d) 

For calculating ISRO, we need the difference in the 
structure factors 

fAl--fnl = 4 i ( f a r - - f C H 3 )  sin[K. (X, + Y,)/2] 

x cos [K. (X~-Y, ) /2 ]  (22a) 

fA2--fB2=4i(fBr--fcH~) sin [K. (X2 + Y2)/2] 

x cos [K. (X2 - V2) / 2 ]. (22b) 

The sinusoidal, or cosinusoidal, modulations 
observed in (22) are a typical feature of diffuse scatter- 
ing from molecular crystals and can help a great deal 
in data analysis. If we assume that molecules of a 
given type do not have a specific sublattice (sub) 

i i 1 " " preference, i.e. x, = x2-- :x, and x~ = x~ = ½xj, where 
x~ and xj are total fractions of i- and j- type molecules, 
the Laue monotonic intensity can be written as 

ILM=4X,Xj(fB~--fC.H3)2{sin 2 [K. (X~ + Y~)/2] 

x cos 2 [K. ( X , -  Y,)/2] + sin 2 [K. (X2 + Y2)/2] 

x cos 2 [K. (X2- Y2)/2]}. (23) 

There are two different types of vectors for BEMB2. 
The first ones are between the pairs sub l - sub l  and 
sub2-sub2 of the different unit cells and the second 
ones are between subl-sub2 of the same or different 
unit cells. Direct substitution of (22) in (20a) for type 
1 vectors yields 

ff,~ =4X~Xj(fBr--fcH,)2{sin 2 [K. (X~ + Y~)/2] 

× cos 2 [K. (X, -Y~) /2]  +sin  2 [K. (X2+Y2)/2] 

x cos2[K. (X2--Y2)/2]}aA~ (24a) 

and for type 2 vectors 

6~,,= 8X,Xj(fBr--fCH3)2{sin [K. (X, + Y~)/2] 

× cos [K. ( X , - Y , ) / 2 ]  sin [K. (X2 + Y2)/2] 

x cos [K. (X2- Y2)/2]}a AB.1.. (24b) 

It is to be noticed that the coefficients c~ in the present 
form are strongly K dependent. Division by ILM 
removes the K dependence of only type 1 vectors. 
This problem arises because of the different molecular 
orientations in the different sublattices. For this 
reason the Borie & Sparks (1971) method cannot be 
directly applied to disordered molecular crystals. If 
we proceed in the same manner, the coefficients ~/of 
the size-effect modulation for type 1 vectors can be 
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written as 
2 

[F~j,(Uu~,(x))+(F~, ~, + Fm,)(U~,~,(x)) ~lx~ix = 2"71" E A A  A A  A B  B A  A B  

~=1 

B e  BB + F~,~(U,~,(x))] (25a) 

and for type 2 vectors 

Y~,~-x = 417"[ F,2AA ( U,2aA (x))+ ( F?ff + FfA)( Ua~(x)) 

+ F~ff ( U~2B(x))]. (25b) 

The explicit forms of various F's are tabulated in 
Appendix 2. The y's are in general K dependent and 
have a very complex form. The point to be noted at 
this stage is that the ordered part of the molecule, i.e. 
the diethylbenzene nucleus, makes a contribution to 
the size-effect modulation but does not affect ISRO. 
Scaling of the y's by ILM again does not remove their 
K dependence. We next evaluate the coefficients g(1) 
and g(1) involving the mean square and cross prod- 
ucts of the displacements respectively. For type 1 
vectors 

2 
6~-~.(1) 47r 2 y, { AA AA 2 = F~.,([U~,.(x)] ) 

/z=l 

A S  B A  A B  2 + ( F ~  + F,. .)([U,.~(x)] ) 
BB BB 2 + F~,~,([ V,~,(x)] )} (26a) 

and for type 2 vectors 

g~'2( 1 ) = 8~2{ F ~ 2A(([ U ~2Afft (X)] 2) 

+ ( F ~  e + F,~%)<[ urn(x) ]  ~) 

+ Ffff([ Ufff(x)]2)}. (26b) 

The coefficients g(1) for type 1 vectors can be written 
a s  

2 
e~,~,(1) 8"rr2 Z Am A A  A A  -x U~,,(y)) = [F, . . (U, . . (x )  

/x=l 

A B  B A  A B  A B  U,,~,( +(F~ ,  + F~,~)(U, , (x)  y)) 
B e  B e  B e  U~,.( + F~,,(Um,(x ) y))] (27a) 

and for type 2 vectors 

g~(1) = 16'rr2[F~aEa(U~(x)U~'~A(y)) 

+ ( F ' ~  + F~( ) (U#~(x)U~e(y ) )  
BB BB BB + F~2 (U~2 (x) U12 (y))]. (27b) 

At this stage no attempt is made to simplify these 
relations. We now evaluate the contributions from 
the libration terms 6(2) and e(2). BEMB2 is not 
symmetric about the centre of mass (CM) of the 
molecule. At present we consider librations about 
three mutually perpendicular axes passing through 
the CM and concentrate on the positions of the Br 
atoms. Libration of the molecule about an axis per- 
pendicular to the plane of the molecule moves two 
Br atoms differently, i.e. although the magnitude of 

the displacement u is identical for both atoms, its 
direction is different. Movement about an axis passing 
through two diethyl groups moves the two Br atoms 
in opposite directions. A movement about the third 
axis along the perpendicular bisector of the vector 
joining Br and C H  3 causes  the two Br atoms to move 
in the same direction by the same amount. For a 
general libration movement there may not be a well 
defined relationship between the displacements of the 
two Br atoms. The same holds true for other atoms 
of the molecule. However, a pair of atoms symmetric 
about the CM always move in opposite directions by 
the same amount. The modified structure factor of 
the molecule may be written as 

fA1 + AfA1---Ar {exp [iK. (X~ + AXe) 

+exp [iK. (Y~ + AYe)]} 

+fcH~ {exp [ - i K .  (X~ + AX1) 

+exp [ - iK.  (Y1 + aY,)]}+fl + at", (28) 

where AXl and Ay~ are the positional changes and 
A fl is the change in the structure factor of the ordered 
diethyl nucleus. For small displacements 

AfA 1 "-" iK. AXl[fBr ex p (iK. X~)--fCH3 exp ( - i K .  Xl)] 

+ iK. AY~[fBr exp (iK. Y~) 

--fCH3 exp ( - i K .  Y,)]+ Af, (29) 

and similarly for Afro, A f A  2 and Af82. Explicit forms 
of 6(2) and e(2) can then be obtained by substituting 
(29) in (20d) and (20f) respectively. 

2.2. BEMB1 
BEMB1 differs from BEMB2 only in the position 

of the substituents Br and c n  3. With the same nota- 
tion as for BEMB2, let the vectors Xa and -X1 rep- 
resent the position of Br atoms with respect to the 
centre of mass of the molecule in orientation A 
located on sublattice 1. Y~ and -Y~ then represent 
the position vectors of CH3.  The structure factor of 
the molecule in the different orientations can then be 
written as 

fa, =fBr[eXp (iK. X,) + exp ( - i K .  Xa) ] 

+fcH3[exp (iK. Y,) + exp ( - i K .  Y,)] +f~ 

fm =fBr[exp (iK. Y,)+ exp (-iK. Y~)] 

+fcH3[exp (iK. X,) + exp ( -  iK. X,)] +f~ 

(30a) 

(30b) 

and for sublattice 2 

fA2 =fBr[eXp (iK. X2) + exp ( - i K .  X2)] 

+fcH3[exp (iK. Y2) +exp ( - i K .  Y2)] +f2 
(30c) 
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fa2 =fBr[exp (iK. V2) +exp ( - i K .  V2)] 

+fcH3[exp (iK. X:) + exp ( - i K .  X2) ] +f2. 

(30d) 

The difference in structure factors can be written as 

fA,-fB1 = 4(fBr--fC.3)  sin [K. (X~ + V~)/2] 

x sin [K. (X~- V~)/2] (31a) 

fA2- f~2  = 4 ( f ~ r - f c . 3 )  sin [K. (X2+ Y2)/2] 

xsin [K. (X2-Y2)/2]. (31b) 

Comparing (22) and (31) we observe that in some 
directions of reciprocal space, ISRO for BEMB1 and 
BEMB2 will be complementary to each other, one of 
them being sinusoidal in nature and the other 
cosinusoidal. The experimental results of Welberry 
& Siripitayananon (1986, 1987) corroborate this 
observation. The Laue monotonic intensity for 
BEMB1 can be written as 

ILM=4XiXj(fBr--fCH3)2{sin 2 [K. (X1 + Y~)/2] 

x sin 2 [K. (X~ - Y1)/2] + sin 2 [K. (X2 + ¥2)/2] 

x sin 2 [K. (X2- Y2)/2]}. (32) 

As is the case for BEMB2, there are two types of 
interatomic vectors for BEMB1. Direct substitution 
of (30) into (20a) yields, for type 1 vectors, 

a~, = 4xixj( f a r -  fc.3)2{sin 2 [ (X~ + Y,)/2] 

x sin 2 [(X~-Y~)/2] + sin 2 [(X2 + Y2)/2] 

x sin 2 [(X2- Y2)/2]} (33a) 

and, for type 2 vectors, 

G~, = 8xixj(fB~- fc.3)2{s in [(X~ + Y~)/2] 

x sin [(X~-Y1)/2] sin [(X2 + Y2)/2] 

x sin [ (X 2 - -  Y2) / 2 ]}. (33 b) 

General expressions for 3', 3 and e, as given by 
(24)-(27), are identical for BEMB1 and BEMB2. 
However, the general forms of various F 's  are 
different and have been tabulated in Appendix 2. 
Since BEMB1 is a symmetrical molecule, the contri- 
bution from libration has a simpler form for BEMB1 
than for BEMB2. The modified structure factor for 
BEMB1 can be written as 

fAl + AfA1 =fBr{eXp [iK. (X~ + AX~)] 

+exp [ - i K .  (X, + AX1)]} 

+fc,~{exp [iK. (Y~ + z~ Y~)] 

+ exp [ - i K .  (Y~ + AY~)]} +f~ + Af~ (34a) 

nfA~ "" +2i lK.  ZlX1fB~ sin (K. X~) 

+ K • AY~fc.~ sin (K. Y~)] + Af~ (34b) 

and similarly for AfA2, AfB 1 and zafB2. 

3. Separating the various contributions to 
diffuse scattering 

It is obvious from the various expressions developed 
in the previous sections that the Boric-Sparks method 
cannot be used directly for analysing diffuse scatter- 
ing data from molecular crystals. Since the coefficients 
a, y, 6 and e have a fairly complex K dependence, 
summations in (19a) cannot be represented as simple 
Fourier series. As these coefficients depend strongly 
on the nature of the molecule, the basic procedure 
for data analysis may differ from one system to 
another. Here the examples of BEMB1 and BEMB2 
discussed above will be employed. As a first step we 
assume that the major contribution to the diffuse 
scattering comes from short-range order and attempt 
to remove the K dependence of a in some special 
regions of reciprocal space. Other coefficients are 
assumed to be small and to vary slowly with K. ISRO 
is then obtained from the observed data by the Boric- 
Sparks method modified for use with low-symmetry 
monoclinic crystals. As ISRO vanishes in some regions 
of reciprocal space owing to the oscillatory nature of 
the molecular structure factors, the displacement 
coefficients can be further optimized. This procedure 
can be repeated several times until a satisfactory fit 
is obtained. 

The main problem in the analysis of diffuse scatter- 
ing data from BEMBI and BEMB2 arises from the 
different molecular orientations in the two sublattices. 
We first try to separate the contributions to ISRO from 
the two sublattices. From (22) and (31) we note that 
the contribution from vectors associated with subl 
will be zero for the following set of K vectors: 

BEMB 2 

K. (X~+Y1)/2= nTr and K.(X~-Y~) /2=(m+½)Tr ,  

(35) 
which yields 

h l (x l+y l )+h2(x2+y j+h3(xa+Y3)  = n, (36a) 

h~(x l -y~)+h2(x2-Y2)+h3(x3-Ya)=(m+½) ,  (36b) 

where n and m are integers; 

BEMB 1 

K. (X~+ Y~)/2= nTr and K. (X~-Y~)/2= m m  (37) 

which yields 

h~(xl+yl)+h2(x2+Y2)+h3(x3+Y3)=n,  (38a) 

h l ( x l - y l )+h2(x2 -Y2 )+h3(x3 -Y3 )  = m. (38b) 

The contribution to ISRO from vectors associated with 
sub2 vanishes for the following set of K vectors: 

BEMB 2 

K. (X2 + Y2)/2 = nTr and K. (X2- Yz)/2 = (m + ½)Tr, 

(39) 
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which yields 

hl(Xt+yl)-h2(x2+Y2)+ha(x3+ya)=n, (40a)  

h l (X~-y~) -h2 (x2 -Y2)+  h3(x3-Y3) = m+½; (40b) 

BEMB 1 

K.(X2+Y2)/2=nTr and K. (X2-Y2) /2=mcr ,  (41) 

which yields 

hl(x l+yl) -h2(x2+Y2)+h3(x3+Y3)  = n, (42a) 

h~(x~-y~ ) -h2 (x2 -Y2)+h3(x3 -Y3)=m.  (42b) 

For the set of vectors represented by (36) and (38), 
for BEMB2 and BEMB1 respectively, ISRO will have 
a contribution only from intermolecular vectors 
belonging to sub2-sub2. If the observed data at these 
points are scaled by a portion of ILM arising from 
sub2-sub2 vectors, the coefficients c~ thus obtained 
will be K independent. 

Owing to the low symmetry of monoclinic BEMB1 
and BEMB2, it is not possible to simplify greatly the 
general expression for ID [(19)], thus necessitating 
measurement of the diffuse scattering in extensive 
regions of reciprocal space. ID, the total diffuse 
intensity, may be written as 

Io(hl ,  h2, h3) = IsRo(hl, h2, h3)+ h~Qx(h~, h2, h3) 

+ h2Qy(hl, h2, ha) + haQz(hl, h2, h3) 

+hEgx(hl ,hE,  h3) 

+ h2Ry( h~, h2, h3) 

+ h2Rz(hx, hE, ha) 

+ hlh2Sxy(hl, hE, h3) 

+ h2h3Syz(hl, hE, h3) 

+ h3hlSzx(hl, hE, ha). (.4.3) 

The validity of (43) is not just restricted to the 
special region of reciprocal space being discussed 
above, but is true over all reciprocal space. From 
symmetry considerations, the phase factors S~,Am', 
can be considerably simplified in summations (19b)- 
(19e). At this stage, i.e. for the special regions of 
reciprocal space, it is permissible to replace the sum 
over/z, v, m and n by N times a single sum over the 
intermolecular vector la~ + ma 2 ÷ na3, giving 

IsRo(hl, h2, h3) = ~ c~m,~ cos2"ff(hll+h2m+han) 
l,m,n (44a) 

Qx(h~ h2 h 3 ) = -  E -x, , , Tlm,,sin2"rr(hll+h2m+h3n) 
I,m,n (44b) 

Rx(hl,  hE, h3) = ~ t~',, cos 2~r(hll+ hEm +han) 

Sxy(hl, h2, h3) = ~ e~Ytn cos2,n'(hl l+h2m+h3n).  
l,m,n (44d)  

The primed coefficients in these Fourier series are the 
coefficients in (19) scaled by ILM from sub2-sub2 
vectors. 

The series in (44) have a periodicity of one. 
However, only a limited number of K vectors per- 
mitred by (36) and (38) can be used in data analysis. 
The real periodicity will be governed by the magni- 
tudes of X~ and Y~. Let m~, m2 and m3 represent the 
basic periodicities along the three reciprocal-lattice 
directions 

ml=nl/hl(x~+ yl), m2=n2/h2(x2+Y2), 

m3 = n3/ h3(x3 + Y3). (45) 

nl, n2 and n3 are the smallest integers for which the 
right-hand side of (45) approaches an integer. The 
various terms in (43) can then be separated as follows: 

Rx( hl, h2, h3)=[ ID( h~ + m~, h2, h3) 

-2Io(hl,  h2, h3) 

+ID(h~-m~,hE,  h3)]/2m 2 (46a) 

Sxy( h~ , h2, h3) = [ Io( h~ , h2, ha) - ID( hi -- ml , h2, ha) 

- ID(hl, h2-  mE, h3) 

+ ID(hl - -ml ,  h2 -m2 ,  ha)]/mlm2 
(46b) 

Qx(h,, h2, h3) = [ ID(h,,  h2, h3) -- Io(h~, h2-  m2, h3) 

- ( 2 m l -  m2)Rx( hl, h2, h3) 

- m2h2Sxy(h,, h2, h3) 

-m3h3Sxz(hl ,h2,  h3)]/ml (46c) 

and similarly for the other terms. Once Q, R and S 
are known, ISRO can be obtained from (43) and the 
coefficients a due to sub2-sub2 vectors can then be 
evaluated. The coefficients a due to subl-sub2 vectors 
are expected to be identical to the coefficients due to 
sub2-sub2 vectors. The contribution to ISRO from type 
1 vectors (subl-subl ;  sub2-sub2) can then be calcu- 
lated over all reciprocal space from (10) and deducted 
from the observed diffuse scattering data. The remain- 
ing data contain the contribution to ISRO from subl-  
sub2 vectors and displacement scattering. These data 
are then scaled by ILM due to subl-sub2 vectors and 
the various terms separated by the procedure outlined 
above. This basic periodicity will now be one as there 
are no specific restrictions on K vectors. 

4. Concluding remarks 

General equations for diffuse scattering from dis- 
ordered molecular crystals and a data-analysis 
scheme for separating its various components have 
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been presented. The separation of components is 
severely handicapped by the presence of different 
molecular orientations in the different sublattices. The 
assumption of treating the various displacement 
coefficients (y, 8 and e) as K independent could be 
a major source of error in the processed data. 
However, this error can be evaluated and rectified to 
some extent by making measurements at two different 
temperatures. Terms higher than quadratic in K have 
also been neglected in the present treatment and may 
be an additional source of error. 

Unlike the case of alloys, the concept of the 
minimum-volume cell is not particularly useful for 
molecular crystals. These crystals in general have low 
symmetry and the diffuse-scattering data need to be 
measured in extended regions of reciprocal space. 
Owing to the complexity of the equations involved, 
no attempt is made at this stage to separate the contri- 
butions due to displacements and librations. The 
effect of the various terms will be further evaluated 
for some special cases through computer simulation 
and optical-diffraction experiments. 

A P P E N D I X  1 

Let f .  be the atomic scattering factor of an atom n 
of the molecule and r. be its position vector with 
respect to the centre of mass of the molecule. Let u. 
represent the displacement of atom n due to libra- 
tions. The change in structure factor of the molecule 
can then be written as 

A f =  Y . f .  exp [ iK. (r. + u.) ] - ~ f .  exp (iK. r .)  
n n 

=~, , f .  exp (iK. r .)[exp (iK. u . ) -  1] 
n 

= i E (K. u . ) f .  exp (iK. r.)  
tl 

for small displacements. Substitution of At" into (17) 
results in a K2-dependent contribution from 
molecular librations. 

A P P E N D I X  2 

The general expression for f~.f* of BEMB2 is given 
below. 

f o z f * = 4 ( f B r + f C H 3 )  2 COS [K. (X, + YI)/2] 

x cos [K. ( X i -  Y,)/2] cos [K. (X2 + Y2)/2] 

xcos [K. (X2-Y2)/2] 

+ 4(fsr--fCH3) 2 sin [K. (Xl + Y,)/2] 

x cos [K. ( X , -  Y~)/2] sin [K. (X2 + Y2)/2] 

x cos [K. (X2- Y2)/2] 

+ 4i(f2r--f2cH3) COS [K. (X~- Y~)/2] 

where 

and 

x cos [K. (X2- Y2)/2] 

x {sin [K. (X, + Y,)/2] cos [K. (X2 + Y2)/2] 

- R,~ sin [K. (X2 + Y2)/2] 

x cos [K. (X, + YI)/2]} 

+ 2(fBr+fCH,){f , ,  COS [K. (X2+ Y2)/23 

x cos [K. (X2-Y2)/2] 

+ f *  cos [K. (X, + YI)/2] 

x cos [K. ( X , -  Y,)/2]} 

- 2iRlj( fsr+fcH3){f ,~ sin [K. (X2 + Y2)/2] 

x cos [K. (X2-Y2)/2] 

+ f *  sin [K. (X, +Y,) /2]  

x cos [K. ( X , -  Y,)/2]} + f  r ,  

R~,~ = 1 when Ix = v 

= -1  otherwise 

R o -  +1 for i = j = A  

= - 1 otherwise. 

The expression for f , f ~  can be obtained from f~,,f* 
by changing X2 to X~ and Y2 to Y, and the other way 
round for f~2f~. The coefficients F can then be calcu- 
lated from (13). 

For BEMB1, f~,,f* (i # j )  can be written as 

fi~,f* = 4[fBr COS (K. Y,) +fCH3 COS (K. Xl)] 

X [fBr COS (K • X2) +fCH, COS (K. Y2)] 

+ 2ft, [fBr COS (K. X2)+fCH3 COS (K. V2)] 

• (K. (K.XI)]  + 2f~ [fBr COS YI) +fCH, COS 

+fsff*" 

The expression for f~,f~ (i e j)  can be obtained by 
changing X2 to X, and Y2 to Y1 and f , f *  by changing 
X2 to Y, and Y2 to XI; and similarly for f~2f~. Note 
that the expressions for BEMB1 and BEMB2 are 
completely different. 
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Abstract 
Neutron powder diffraction data for the plastic crys- 
talline phase of n-butane are refined with a model 
suggested from molecular dynamics (MD) computer 
simulation work. A small decrease in the R factor is 
achieved, corresponding to a reduction of the dis- 
crepancy between fit and experiment of about 30%. 
This supports the MD result that the orientational 
distribution function (ODF) describing the disorder 
is an asymmetric sum of four angular Gaussian distri- 
butions, one of which is dominant. The orientational 
disorder is uniaxial about the axis between the end 
C atoms of a molecule. Refinement of the four- 
Gaussian function is stable, and results in a distribu- 
tion closely related to that obtained from the MD 
work. It is suggested that the ODF is temperature 
dependent, and that this dependence could be found 
by a further series of high-quality experiments. 

Introduction 

Although n-butane ( C H 3 C H 2 C H 2 C H 3 )  is a very 
simple well known molecule, its crystal structures 
were not successfully studied until recently. Our 
analysis of neutron powder diffraction data obtained 
with perdeuterobutane yielded the structures of three 
phases (Refson & Pawley, 1986; paper I). The phase 
below the melt, phase I, is a plastic crystal phase 
showing orientational disorder about a unique axis, 
and it is this phase which is now the subject of further 
analysis. The other phases which occur on cooling 
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Oxford, Parks Road, Oxford OX1 3PD, England. 
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are a metastable phase II followed by a stable truly 
crystalline structure, phase III, which persists to very 
low temperatures. 

A considerable body of information from model 
calculations has been built up since the work of paper 
I concerning the possible nature of the disorder in 
the plastic phase. The aim of the present work is to 
examine whether there is any experimental evidence 
to confirm the results from the model, and whether 
there is enough information in the experimental 
results to justify further structure refinements guided 
by the model. 

Our work on n-butane started with computer simu- 
lations of the condensed phases using molecular 
dynamics (MD). The MD model consisted of 2048 
molecules in a volume with periodic boundary condi- 
tions, each molecule interacting with its neighbours 
through atom-atom potentials between all its C and 
D atoms. Three torsional internal degrees of freedom 
were included, though it was found later that the two 
methyl-group torsions had no effect on the coopera- 
tive dynamics and could have been omitted. Simula- 
tions were performed before any of the true structures 
were determined in the hope that the structures found 
by MD would be as in nature and thus of great help 
in the crystallographic determination (Refson & 
Pawley, 1987a; paper II). 

The model predicted three phases as found in 
nature, but with incorrect structures. Consequently 
the determination of the natural structures and their 
refinements, paper I, was done without the aid of 
MD simulations. The structures so found have since 
been used as the start for further simulations which 
have proved the model to be good (Refson & Pawley, 
1987b; paper III). The results from the simulation 
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